Affichage des articles dont le libellé est Science. Afficher tous les articles
Affichage des articles dont le libellé est Science. Afficher tous les articles
samedi 22 octobre 2011
Tan Le: A headset that reads your brainwaves
mardi 18 octobre 2011
Insecte télécommandé

Ce scarabée est un espion. Des électrodes dans son cerveau font de lui un insecte téléguidé.
Source: scienceline.org
vendredi 19 août 2011
MTRAN3 Modular Robot
Comment, avec un simple module répété à la demande, il est possible de concevoir des ensembles à vocation diverses.
Chaque module dispose d’une autonomie suffisante et ses propres capteurs.
4 leg Wide To Snake M-TRAN II Robot par Tweepy
Source National Institute of Advance Industiral Science and Technology (AIST)
BigDog
BigDog est un robot quadrupède à l'allure de chien créé en 2005 par la société américaine Boston Dynamics. Foster-Miller, le Jet Propulsion Laboratory et la Harvard University Concord Field Station ont également participé à sa création1. Il a été financé par la DARPA, l'agence de recherche du département de la Défense des États-Unis.
BigDog est une sorte de mulet destiné à accompagner les soldats en leur transportant du matériel dans des terrains trop irréguliers pour les véhicules. Il peut également mener des opérations d'observation. Il utilise quatre pattes qui lui permettent de se mouvoir sur un sol impraticable pour des engins ou robots avec des roues. Il mesure 91 cm de long pour 76 cm de haut et pèse 110 kg soit la taille d'une petite mule. Il est capable de traverser un terrain difficile à 6,4 km/h, de porter un chargement de 150 kg et de grimper des pentes de 35°.
Une vidéo diffusée par Boston Dynamics en mars 2008 montre un BigDog capable de se mouvoir dans des terrains enneigés ou verglacés et de se rétablir après avoir été violemment poussé sur le côté.
Son déplacement est contrôlé par un ordinateur embarqué qui reçoit des informations de multiples capteurs de l'engin. La navigation et l'équilibre sont aussi gérés par cet ordinateur.
Sources Wikipedia + Boston Dynamics
mercredi 17 août 2011
Tatouages électroniques
![]() |
a system developed by research teams at the university of illinois and northwestern university lets sensors and communications electronics be worn on the skin as easily as a temporary tattoo |
In a device platform that spans communications, human-machine interfaces and gaming, and medical diagnostics, ultrathin electronics can be worn as simply and unobtrusively as a temporary tattoo with the system developed by a research team led by todd coleman and john rogers of the university of illinois at urbana-champaign and yonggang huang of northwestern university.
Sensors and communication electronics are embedded into flexible transparent sheets that stick to skin. the unobtrusive quality of the device opens the potential for a host of measurements and control systems that could offer more accurate day-to-day data than laboratory figures (when patients are in unnatural conditions), while the use of other kinds of electronic modules permits covert communications and physiological-directed gaming.
The tested electronics feature electrophysiological and physical sensors as well as wireless communication modules.
Recordings for EEG, EKG/ECG, and EMG sensors (measuring electrical activity in the brain, heart, and skeletal muscles respectively) were comparable to data obtained via bulky commercial devices.
The team also demonstrated the system's potential for use in human-machine interfaces of other kinds.
When mounted to a user's throat, simple spoken commands can be translated into electrical controls-- here, for example, the device wirelessly controlled movement in the video game sokoban in response to a user's vocalization of the commands 'up', 'down', 'left', and 'right'.
![]() |
closer view of the system |
The challenge of the project was overcoming the rigidity of electronic systems, which the team accomplished by fabricating the circuitry as snakelike nanoribbons of wires mounted onto a lightweight, stretchable membrane.
With this geometry, called 'filamentary serpentine' by the research team, the wires can bend, twist, and stretch while maintaining functionality.
The device adheres to the stick via the electrostatic phenomenon of van der waals force, requiring neither tape nor glue nor bulky wires, and thus easily removable.
Coleman notes:
'if we want to understand brain function in a natural environment, that’s completely incompatible with EEG studies in a laboratory. the best way to do this is to record neural signals in natural settings, with devices that are invisible to the user.
![]() |
the 'filamentary serpentine' fabrication system makes the circuitry flexible both on and off the skin; here, it remains intact even when the skin is pressed firmly with tubing |
![]() |
adhering to the skin via van der waals electrostatic force, the device requires no glue, tape, gels, or bulky wiring |
![]() |
the test depicted her demonstrates that the system can be used without interference coupled with actual temporary tattoos, an invaluable opportunity for medical diagnostics in children |
Tattoo electronics could have medical applications from Northwestern News on Vimeo.
Source Designboom
Inscription à :
Articles (Atom)